Consumer Confidence Report

2021 Annual Drinking Water Quality Report Kane County Water Conservancy District Duck Creek Wells#1, #2, #3 – System #13057

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water.

The Kane County Water Conservancy District is pleased to report that our drinking water meets federal and state requirements. This report shows our water quality and what it means to you our customer. If you have any questions about this report or concerning your water utility, please contact Amanda Buhler at (435) 644-3997 or e-mail her at kanecowater@gmail.com. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are normally held on the 2nd Thursday of each month in the KCWCD conference room at 7:00PM from April through October and at 6:00PM from November through March.

Kane County Water Conservancy District routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1st to December 31st, **2021.** All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

			TEST	RESUL	ГS		
Contaminant	Violation Y/N	Level Detected ND/Low- High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
Microbiological	Contam	inants					
Total Coliform Bacteria	N	0	N/A	0	Presence of coliform bacteria in 5% of monthly samples	2021	Naturally present in the environment
Fecal coliform and <i>E.coli</i>	N	0	N/A	0	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or <i>E. coli</i> positive	2019	Human and animal fecal waste
Turbidity for Ground Water	N	1.16	NTU	N/A	5	2019	Soil runoff

Turbidity for Surface Water	N	NA	NTU	N/A	0.5 in at least 95% of the samples and must never exceed 5.0	2011	Soil Runoff (highest single measurement & the lowest monthly percentage of samples meeting the turbidity limits)
Radioactive Cor	ntamina	ants					
Alpha emitters	N	6.95	pCi/1	0	15	2019	Erosion of natural deposits
Combined radium	N	1.95	pCi/1	0	5	2019	Erosion of natural deposits
Radium 228	Ν	1.15	pCi/1	0	5	2019	Erosion of natural deposits
Inorganic Conta	minan	ts			•		•
Antimony	N	ND	ppb	6	6	2019	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	N	.0011	ррb	0	10	2019	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Asbestos	N	W	MFL	7	7	2011	Decay of asbestos cement water mains; erosion of natural deposits
Barium	N	.7	ppb	2000	2000	2019	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	Ν	ND	ppb	4	4	2019	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	Ν	ND	ppb	5	5	2019	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Carbon, Total Organic (TOC)	Ν	<.5	ppm	NA	TT	2011	Naturally present in the environment
Chromium	N	ND	ppb	100	100	2019	Discharge from steel and pulp mills; erosion of natura deposits
Copper a. 90% results b. # of sites that exceed the AL	N	A .0459 ave B 0	ppm	1.3	1.3	2019	Corrosion of household plumbing systems; erosion o natural deposits
Cyanide	N	ND	ppb	200	200	2019	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	N	.25	ppb	4000	4000	2019	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

Lead	Ν	A .0010	ppm	0	.015	2019	Corrosion of household
 a. 90% results b. # of sites that exceed the AL 		ave B 0					plumbing systems, erosion of natural deposits
Mercury (inorganic)	N	ND	ppb	2	2	2019	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
*Nitrate (as Nitrogen)	Ν	ND	ppm	.1	10	2021	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen)	N	<120	Ррb	1000	1000	2011	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	N	.002	ррb	50	50	2019	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	N	1.25	ppm	None set by EPA	None set by EPA	2019	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills.
Thallium	N	ND	ррЬ	1	2	2019	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories
TDS (Total Dissolved solids)	N	184	ppm	1000**	1000**	2019	Erosion of natural deposits

*If the sulfate level of a public water system is greater than 500 ppm, the supplier must satisfactorily demonstrate that: a) no better water is available, and b) the water shall not be available for human consumption from commercial establishments. In no case shall water having a level above 1000 ppm be used.

**If TDS is greater than 1000 ppm the supplier shall deomonstrate to the Utah Drinking Water Board that no better water is available. The Board shall not allow the use of an inferior source of water if a better source is available.

Volatile Organic Contaminants

U							
Benzene	N	ND	ppb	0	5	2019	Discharge from factories; leaching from gas storage tanks and landfills
Carbon tetrachloride	N	ND	ppb	0	5	2019	Discharge from chemical plants and other industrial activities
Chlorobenzene	N	ND	ppb	100	100	2019	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene	N	ND	ppb	600	600	2019	Discharge from industrial chemical factories
p-Dichlorobenzene	N	ND	ppb	75	75	2019	Discharge from industrial chemical factories
1,2 - Dichloroethane	N	ND	ppb	0	5	2019	Discharge from industrial chemical factories
1,1 - Dichloroethylene	N	ND	ppb	7	7	2019	Discharge from industrial chemical factories
cis-1,2-trichloroethylene	N	ND	ppb	70	70	2019	Discharge from industrial chemical Factories
trans - 1,2 - Dichloroethylene	N	ND	ppb	100	100	2019	Discharge from industrial chemical factories

Dichloromethane	N	ND	ppb	0	5	2019	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane	Ν	ND	ppb	0	5	2019	Discharge from industrial chemical factories
Ethylbenzene	Ν	ND	ppb	700	700	2019	Discharge from petroleum refineries
Styrene	N	ND	ррb	100	100	2019	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene	Ν	ND	ppb	0	5	2019	Discharge from factories and dry cleaners.
1,2,4 -Trichlorobenzene	Ν	ND	ppb	70	70	2019	Discharge from textile- finishing factories
1,1,1 - Trichloroethane	N	ND	ppb	200	200	2019	Discharge from metal degreasing sites and other factories
1,1,2 -Trichloroethane	Ν	ND	ppb	3	5	2019	Discharge from industrial chemical factories
Trichloroethylene	N	ND	ррb	0	5	2019	Discharge from metal degreasing sites and other factories
Toluene	Ν	ND	ppb	1000	1000	2019	Discharge from petroleum factories
Vinyl Chloride	N	ND	ррb	0	2	2019	Leaching from PVC piping; discharge from plastics factories
Xylenes	N	ND	ррb	10000	10000	2019	Discharge from petroleum factories; discharge from chemical factories
Disinfection By-p	roduct	S					
TTHM [Total trihalomethanes]	Ν	ND	ppb	0	80	2019	By-product of drinking water disinfection
Haloacetic Acids	Ν	ND	ppb	0	60	2019	By-product of drinking water disinfection
Chlorine	Ν	<0.5	ppm	4	4	2021	Water additive used to control microbes